Energy of Chemical Bonds and Spatial Energy Principles of the Hybridization of Atom Orbitals

G. A. Korablev, ${ }^{1}$ G. E. Zaikov ${ }^{2}$
${ }^{1}$ Basic Research-Educational Center of Chemical Physics and Mesoscopy, Udmurt Research Center, Ural Division, Russian Academy of Sciences, Izhevsk, Russia
${ }^{2}$ Institute of Biochemical Physics After N. M. Emanuel, Russian Academy of Sciences, 4 Kosygina Street, Moscow 119991, Russia

Received 22 September 2005; accepted 5 January 2006
DOI 10.1002/app. 24213
Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract

Methods for the evaluation of energy directedness of atom orbital hybridization and the calculation of the energy of chemical bonds in simple and complex structures are proposed on the basis of the application of the spatial energy parameter concept. Appropriate calculations and comparisons for 68 compounds were made. The calcu-

lation results agreed with the experimental data. © 2006 Wiley
Periodicals, Inc. J Appl Polym Sci 101: 2101-2107, 2006

Key words: spatial-energy parameter; hybridization; bond energy

INTRODUCTION

Bond energy is a direct measure of chemical bond strength. Its value is determined by the work necessary to destroy the bond between the atoms of a molecular structure (or the gain of energy in the formation process of this structure from atoms). If the molecule contains two or more similar bonds, the breakoff energy of this bond differs from its average energy (by all bonds).

The values of the bond energy of the electrons of free atoms are calculated by quantum-mechanical methods via the wave functions. ${ }^{1}$ However, their practical application for the determination of the energy values of interatomic bonds of actual structures produces significant difficulties because the values of electron bond energy in these structures depend on the changes in the electron and nucleus configuration of the systems, especially during the hybridization of atom orbitals. The prognostic evaluation of such processes is still not properly developed.

Therefore, the main computational method for determining the values of chemical bond energy is the use of corresponding thermochemical values (enthalpies of the formation of reaction products and the initial molecule).

It is of interest in both the theoretical and practical senses to arrange a more direct dependence between

[^0]Journal of Applied Polymer Science, Vol. 101, 2101-2107 (2006) © 2006 Wiley Periodicals, Inc.
the character of changes in the initial energy characteristics of an atom and the value of its chemical bond energy.

In this respect, it is important to experimentally study the electron spectra of different (not only molecular) structures by means of X-ray electron spectroscopy, which allows one to estimate the electron bond energies in complex systems. ${ }^{2}$

In this research, we attempted to estimate the energy of chemical bonds on the basis of the initial spatial energy characteristics of free atoms with the help of the concept of the spatial energy parameter (P), taking into consideration their changes during the hybridization of atom orbitals.

Method substantiation

The analysis of various physicochemical macroprocesses and microprocesses results in the conclusion that, in many cases, the inverse values of kinetic or energy parameters of subsystems are added when the resulting interaction of atom-molecular structures is estimated. Therefore, the tabulated (initial) values of Ps can be calculated on the basis of the principle of the addition of inverse values of energy components of free atom systems: ${ }^{3}$

$$
\begin{gather*}
\frac{1}{P_{0}}=\frac{1}{q^{2}}+\frac{1}{(w r n)_{i}} \tag{1}\\
P_{E}=\frac{\sum P_{0}}{R} \tag{2}
\end{gather*}
$$

TABLE I
P Parameters of Atoms Calculated via the Bond Energy of the Electrons

TABLE I Continued

$\begin{gathered} \text { Atom } \\ \text { I } \end{gathered}$	Valence electrons 2	$\begin{gathered} w \\ (\mathrm{eV}) \\ 3 \end{gathered}$	$r_{i}(\AA)$ 4			$R(\AA)$ 7	$\begin{gathered} \hline P_{0} / R \\ (\mathrm{cV}) \\ 8 \end{gathered}$	к 9	P_{E} / κ 10	$\begin{gathered} r_{1} \\ (\AA) \\ 11 \end{gathered}$	$\begin{gathered} P_{0} / r_{1} \\ (\mathrm{eV}) \\ 12 \end{gathered}$
Sn	$5 p^{1}$	7.2124	1.240	47.714	7.5313	1.42	5.3037				
						1.58	4.7666				
	$5 p^{2}$				13.0091	1.42	9.1613			1.02	12.754
						1.58	8.2336				
	$\begin{aligned} & 5 p^{3}{ }_{r} \\ & 5 s^{1} \end{aligned}$	12.965	1.027	65.062	17.173	1.42	12.094				
					11.053	1.42	7.7838				
						1.58	6.9956				
	$5 s^{2}$				18.896	1.42	13.307				
						1.58	11.959				
	$5 p^{2}+5 s^{2}$				26.427	1.42	18.611		0.67		38.443
						1.58	16.726		0.67		
Cl	$3 \mathrm{p}^{1}$	13.780	0.7235	59.844	8.5461	1.00	8.5461		1.81	4.7216	
	$3 \mathrm{p}^{3}$				19.943						
	$3 p^{5}$	13.780	0.7235	59.844	27.196	1.00	27.196				
	$3 \mathrm{~s}^{1}$	29.196	0.660	79.928	15.526	1.00	15.526				
	$3 s^{2}$	29.196	0.660	79.928	26.002						
	$3 \mathrm{~s}^{1}+3 \mathrm{p}^{3}$				35.468	1.00	35.468	4	8.867		
	$3 s^{2}+3 p^{5}$				53.198	1.00	53.198		1.81	29.391	
Br	$4 \mathrm{p}^{1}$	12.438	0.8425	73.346	9.1690	1.14	8.0430		1.96	4.6781	
	$4 p^{3}$				22.005	1.14					
	$4 p^{5}$				30.563		26.809				
	$4 \mathrm{~s}^{1}$	27.013	0.730	100.21	16.477		14.454				
	$4 \mathrm{~s}^{2}$				28.300		24.825				
	$4 \mathrm{~s}^{1}+4 \mathrm{p}^{3}$				38.462	1.14	33.739	4	8.4348		
	$4 \mathrm{~s}^{2}+4 \mathrm{p}^{5}$				58.863		51.634		(0.39)	150.93	
I	$5 p^{1}$	10.971	1.0215	77.651	9.7936	1.35	7.2545		2.20	4.4516	
	$5 p^{3}$				23.462	1.35	13.739	3	4.580		
	$5 p^{5}$				32.548		24.109				
	$5 \mathrm{~s}^{1}$	22.345	0.876	103.44	16.459		12.192				
	$5 \mathrm{~s}^{2}$				28.400		21.037				
	$5 s^{2}+5 p^{5}$				60.948		45.147		0.50	121.90	

where w_{i} is the bond energy of electrons; ${ }^{1} r_{i}$ is the orbital radius of the i orbital; $^{4} n_{i}$ is the number of electrons in the given orbital; $q=Z^{*} / n^{*}$, where Z^{*} and n^{*} are the nucleus effective charge and effective main quantum number, respectively; ${ }^{5,6}$ and R is the dimensional characteristics of the atom bond.

Values of tabulated atomic P-parameter $\left(P_{0}\right)$ are constant for electrons of the i orbital of the given atom.

As described in ref. 3, P_{E} is a parameter that numerically equals the energy of the valence electrons in an atom static model, which is a direct characteristic of electron density inside the atom at a given distance from the nucleus and, therefore, can be used to estimate the kinetics of chemical reactions and chemical bond energy of structures.
P_{0} and P_{E} of free atoms were calculated with eqs. (1) and (2), the results of which are given in Table I. For the hydrogen atom, the value of the Bohr radius of the hydrogen atom was equal to $0.529 \AA$; for some cases, the ionic radius ($r_{I}=1.36 \AA$) was used as the main dimensional characteristic.

All atoms, covalent radii, and r_{I} values were taken basically according to Belov-Bokii. For C, N, and O atoms, the possibility of changing covalent radii, de-
pending on the bond repetition factor, was also taken into consideration. For the same elements, the average statistical values of P were given as P_{E} / K, which assumed the possibility for further calculation of the average value of bond energy.

Spatial energy principles of hybridization

Hybridization refers to the mixing of atom orbitals of different types of a given atom in one molecular (or atom) orbital. Hybridization principles are well-developed in accordance with the experimental data in the frames of general theories of valence bonding and molecular orbitals.

However, the sources of energy directedness of hybridization processes have to be further investigated and discussed.

The authors of ref. 1 made a conclusion based on the analysis of multiple computational and experimental data in which the most valence-active were the orbitals with minimum values of P_{0}. We applied this principle to the hybridization of atom orbitals to the example of carbon and nitrogen atoms.

TABLE II

Computation of Bond Energy Taking into Account the Hybridization of Atom Orbitals

Structure1	$\begin{gathered} \text { Bond } \\ 2 \end{gathered}$	Hybridization 3	Orbitals	$\begin{gathered} P_{o^{\prime}} \\ (\mathrm{eVA}) \\ 5 \end{gathered}$	$\begin{gathered} \sum P_{0^{\prime}}{ }^{2} \\ (\mathrm{eVA}) \\ 6 \end{gathered}$	$R \underset{\substack{R_{k} \\(A) \\(A) \\ 7}}{ }$	$\begin{gathered} P_{E}^{\prime} \\ (\mathrm{eV}) \\ 8 \end{gathered}$	$\begin{gathered} (N / \kappa)_{1} \\ 9 \end{gathered}$	$\begin{gathered} P_{E}^{\prime \prime}(\mathrm{eV}) \\ 10 \end{gathered}$	$\begin{gathered} (N / \kappa)_{2} \\ 11 \end{gathered}$	P_{C} (eV) 12	$E\left(\frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)$	
												$\begin{gathered} \text { Calcd } \\ 13 \end{gathered}$	Found 14
Diamond	σ	sp^{3}	$2 \mathrm{~s}^{1}$	9.0209	22.234	0.772	28.801	1/4	28.801	1/4	3.600	347.5	347.3
	$\mathrm{C}-\mathrm{C}$		$2 \mathrm{p}_{\mathrm{r}}{ }^{3}$	13.213									
Graphite (1)	σ	sp^{2}	$2 \mathrm{~s}^{1}$	9.0209	19.082	0.710	26.876	1/3	26.876	1/3	4.479	432.4	418.7-460.6
	$\mathrm{C}-\mathrm{C}$		$2 \mathrm{p}^{2}$	10.061									
Graphite (2)	σ	$\mathrm{s}^{2} \mathrm{p}^{2}$	$2 \mathrm{~s}^{2}$	14.524	24.585	0.710	34.627	1/4	34.627	1/4	4.3283	417.8	418.7
	C-C		$2 \mathrm{p}^{2}$	10.061									
Carbyne$(-\mathrm{C} \equiv \mathrm{C}-)_{1}$	Single	sp	$2 \mathrm{~s}^{1}$	9.0209	13.425*	0.6895	9.7365	1/4	9.7365	1/4	1.2170	117.5	108.9
			$2 \mathrm{p}_{\mathrm{r}}{ }^{1}$	4.4044	*1/2								
Ethylene $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ Acetylene $\mathrm{HC} \equiv \mathrm{CH}$	σ	sp^{2}	$2 \mathrm{~s}^{1}$	9.0209	19.082	0.665	28.695	2/4	28.695	2/4	3.587	346.2	347
	C-C		$2 \mathrm{p}^{2}$	10.061									
	σ	sp	$2 \mathrm{~s}^{1}$	9.0209	13.425	0.601	22.375	3/4	22.375	3/4	8.391	807.6	782
	C-C		$2 \mathrm{p}^{1}{ }_{\text {t }}$	4.4044									
	π		$2 \mathrm{~s}^{1}$	4.4044	8.8088	0.601	14.657	1/4	14.657	1/4	1.832	176.8	
	$\mathrm{C}-\mathrm{C}$		$2 p_{\mathrm{r}}{ }^{1}$	4.4044									
$\begin{aligned} & \text { Methane (1) } \\ & \mathrm{CH}_{4} \end{aligned}$	$\sigma+\pi$											984.4	962.3
	σ	sp ${ }^{3}$	$2 \mathrm{~s}^{1}$	9.0209	22.234	0.546	40.722	1/4	4.7985	1/1	4.716	455.3	435.1
									0.546				
	C-H		$2 \mathrm{p}_{\mathrm{r}}{ }^{3}$	13.213									
Methane (2)	$\mathrm{C}-\mathrm{H}$		$2 \mathrm{~s}^{2}$	14.524	24.585	0.77	31.929	1/4	9.0624	1/1	4.243	409.6	410
			$2 \mathrm{p}^{2}$	10.061									
$\begin{aligned} & \text { Ethane } \\ & \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3} \end{aligned}$	σ	sp^{3}	$2 \mathrm{~s}^{1}$	9.0209	22.234	0.772	28.819	1/4	28.819	1/4	3.6024	347.7	345.6
	C-C		$2 \mathrm{p}_{\mathrm{r}}{ }^{3}$	13.213									
Nitrogen N_{2}	$\mathrm{N}-\mathrm{N}$	-	$2 p^{1}$	6.5916	13.183	0.71	18.658	$1 / 3$	18.658	1/3	3.095	298.7	318
			$2 \mathrm{p}^{1}$	6.5916									
	$\mathrm{N}=\mathrm{N}$	-	$2 \mathrm{p}^{2}$	11.723	23.446	0.63	37.216	1/3	37.216	1/3	6.2026	598.7	586
			$2 \mathrm{p}^{2}$	11.723									
$\mathrm{N}_{2} \mathrm{~N} \equiv \mathrm{~N}$	σ	sp	$2 \mathrm{p}_{\mathrm{r}}{ }^{4}$	19.193	19.193	0.55	34.896	1/3	34.896	1/3	5.8161	561.4	543.4
	$\mathrm{N}-\mathrm{N}$												
	2π		$2 p_{r}{ }^{5}$	21.966	21.966	0.55	39.938	1/5	39.938	1/5	3.9938	385.5	
	$\mathrm{N}-\mathrm{N}$												
	$\mathrm{N}-\mathrm{N}$												
	$\sigma+\pi$											946.9	947.6
$\begin{aligned} & \text { Silicon } \\ & \mathrm{Si}_{2} \rightarrow 2 \mathrm{Si} \end{aligned}$	$\mathrm{Si}-\mathrm{Si}$	$\mathrm{s}^{2} \mathrm{p}^{2}$	$3 s^{2}$	15.711	26.587	1.11	23.952	1/4	23.952	1/4	2.994	289	305 ± 3
	σ		$3 \mathrm{p}^{2}$	10.876									309.6 ± 13
			$3 \mathrm{p}_{\mathrm{r}}{ }^{3}$	13.766	13.766	1.34	10.273	1/3	10.273	1/3	1.712	165.3	176
SiH_{4}	$\mathrm{Si}-\mathrm{H}$	sp^{3}	$3 \mathrm{~s}^{1}$	9.8716	23.638	0.738	32.030	1/4	9.0624	1/1	4.251	410.3	395
			$3 \mathrm{p}_{\mathrm{r}}{ }^{3}$	13.766									
$\begin{array}{r} \text { Germanium } \\ \mathrm{Ge}_{2} \rightarrow 2 \mathrm{Ge} \end{array}$	$\mathrm{Ge}-\mathrm{Ge}$	sp^{3}	$4 \mathrm{~s}^{1}$	10.855	26.658	1.22	21.851	1/4	21.851	1/4	2.7314	263.6	273
	σ		$4 \mathrm{p}_{\mathrm{r}}{ }^{3}$	15.803									278 ± 13
			$4 \mathrm{p}_{\mathrm{r}}{ }^{3}$	15.803	15.803	1.39	11.369	1/3	11.369	1/3	1.895	183	168
$\operatorname{Tin}_{\mathrm{Sn}_{2} \rightarrow 2 \mathrm{Sn}}$	$\mathrm{Sn}-\mathrm{Sn}$	$5 \mathrm{p}_{\mathrm{r}}{ }^{3}$	$5 p_{r}{ }^{3}$	17.173	17.173	1.42	12.094	1/3	12.094	1/3	2.016	194.6	192.5 ± 16.7
Sn (II)	$\mathrm{Sn}-\mathrm{Sn}$	p^{2}	$5 p^{2}$	13.009	13.009	1.63	7.981	1/2	7.981	1/2	1.995	192.6	192.5
Sn(IV)	$\mathrm{Sn}-\mathrm{Sn}$	$\mathrm{s}^{2} \mathrm{p}^{2}$	$5 p^{2}$	13.009	26.427	1.58	16.726	1/4	16.726	1/4	2.098	202.5	192.5
			$5 \mathrm{~s}^{2}$	18.896									
HF	σ	sp^{2}	$2 \mathrm{~s}^{1}$	14.375	31.808	0.64	49.700	1/4	4.79851/0.438	1/1	5.822	562	566
	F-H		$2 p^{3}$	17.433					0.438				
HCl	σ	sp^{2}	$3 \mathrm{~s}^{1}$	15.526	35.468	1.00	35.468	1/4	4.7985/0.529	1/1	4.482	432.6	427.8
	$\mathrm{Cl}-\mathrm{H}$		$3 p^{2}$	19.943					0.529				
HBr	σ	sp^{2}	$4 \mathrm{~s}^{1}$	16.477	38.462	1.14	33.734	1/4	4.7985/0.704	1/1	3.769	363.9	362.5
	$\mathrm{Br}-\mathrm{H}$		$4 p^{3}$	22.005					0.704				
HI	I-H	p^{3}	$5 p^{3}$	23.462	23.462	1.35	17.379	1/3	4.7985/0.8045	1/1	2.94	283.7	294.6

$P_{0}{ }^{\prime}$, tabulated atomic P-parameter of the given atom; R_{K}, cation radius; d, bond length.

Carbon $\left(2 s^{2} 2 p^{2}\right)$

As shown in Table I, the maximum value of P_{0} of the $2 \mathrm{p}^{2}$ orbital was $10.061 \mathrm{eV} \AA$, but the minimum value of P_{0} of the $2 s^{1}$ orbital was smaller ($9.029 \mathrm{eV} \AA$). This means that the $2 s^{1}$ orbital was more valence-active than the $2 \mathrm{p}^{2}$
orbital. This conditioned their hybridization. The calculation, according to eq. (1), produced a value of P_{0} of the $2 p^{3}$ (hybridized) orbital equal to $13.213 \mathrm{eV} \AA$. This was much smaller than P_{0} of the $2 \mathrm{~s}^{2}$ orbital ($14.524 \mathrm{eV} \AA$). Therefore, only the following hybridization options

TABLE III
$D_{0}(\mathrm{~kJ} / \mathrm{mol})$ Values of the Diatomic Molecules

Structure	First atom				Second atom				$\begin{gathered} P_{C} \\ (\mathrm{eV}) \end{gathered}$	D_{0}	
	Orbitals	N / κ	$P_{E}(\mathrm{eV})$	$P_{E} \frac{N}{\kappa}$	Orbitals	N/к	$\begin{gathered} P_{E} \\ (\mathrm{eV}) \end{gathered}$	$P_{E} \frac{N}{\kappa}$		Calcd	Found
1	2	3	4	5	6	7	8	9	10	11	12
CCl	$2 p^{1}$	1/1	7.6208	7.6208	$3 p^{1}$	1/1	8.5461	8.5461	4.0209	388.9	393.3
CBr	$2 p^{1}$	$1 / 1$	7.6208	7.6208	$4 p^{1}$	1/1	8.0430	8.0430	3.9130	377.7	364
CJ	$2 \mathrm{p}^{1}$	1/1	7.6208	7.6208	$5 p^{1}$	1/1	7.2545	7.2545	2.2523	217.4	209.2
CN	$2 \mathrm{p}^{2}$	2/2	13.066	13.066	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	2/5	47.413	18.965	7.7358	746.7	755.6
CN	$2 \mathrm{p}^{2}$	2/2	14.581	14.581	$2 p^{3}$	2/3	25.127	16.751	7.796	752.5	755.6
$\mathrm{C}-\mathrm{O}$	$2 \mathrm{p}^{2}$	1/2	13.066	6.533	$2 \mathrm{p}^{2}$	1/2	17.967	8.984	3.782	365	356
NO	$2 p^{1}$	1/1	9.2839	9.2839	$2 p^{2}$	2/2	20.048	20.048	6.346	612.5	626.8
CH	$2 \mathrm{p}^{2}$	1/2	13.066	6.533	$1 \mathrm{~s}^{1}$	1/1	9.066	9.066	3.7969	366.5	333 ± 1
OH	$2 \mathrm{p}^{2}$	$1 / 2$	17.967	8.9835	$1 \mathrm{~s}^{1}$	1/1	9.066	9.066	4.5118	435.5	423.7
CIF	$3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$	$1 / 7$	$29.391^{\text {a }}$	4.1987	$2 s^{2} 2 p^{5}$	1/7	$38.202^{\text {a }}$	5.4574	2.5579	246.9	229.1
CIO	$3 s^{2} 3 p^{5}$	$1 / 7$	$29.391^{\text {a }}$	4.1987	$2 \mathrm{p}^{2}$	2/2	$8.7191^{\text {a }}$	8.7191	2.8337	273.5	264
CIO	$3 \mathrm{p}^{1}$	$1 / 1$	$4.7216^{\text {a }}$	4.7216	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$	1/6	$30.738^{\text {a }}$	5.123	2.450	237.2	264
FO	$2 p^{1}$	1/1	$4.9887^{\text {a }}$	4.9887	$2 p^{2}$	1/2	$8.7191^{\text {a }}$	4.3596	2.327	224.6	219.2
NF	$2 \mathrm{p}^{3}$	1/3	$10.696^{\text {a }}$	3.5653	$2 p^{1}$	1/7	$38.202^{\text {a }}$	5.4574	2.486	239.5	298.9
NCL	$2 p^{3}$	1/3	22.296	7.432	$3 \mathrm{p}^{1}$	1/1	8.5461	8.5461	3.9751	383.7	384.9
H_{2}	$1 \mathrm{~s}^{1}$	$1 / 1$	9.0624	9.0624	$1 \mathrm{~s}^{1}$	1/1	9.066	9.066	4.533	437.5	432.2
Li_{2}	$2 \mathrm{~s}^{1}$	$1 / 1$	2.2419	2.2419	$2 \mathrm{~s}^{1}$	1/1	2.2419	2.2419	1.121	108.2	98.99
B_{2}	$2 p^{1}$	$1 / 1$	5.4885	5.4885	$2 p^{1}$	1/1	5.4885	5.4885	2.744	264.9	276 ± 21
$\mathrm{C}-\mathrm{C}$	$2 p^{1}$	1/1	7.6208	7.6208	$2 p^{1}$	1/1	7.6208	7.6208	3.810	367.8	376.7
$\mathrm{C}=\mathrm{C}$	$2 \mathrm{p}^{1}$	2/2	13.066	13.066	$2 \mathrm{p}^{2}$	2/2	13.066	13.066	6.533	630.6	611
$\mathrm{N}-\mathrm{N}$	$2 \mathrm{p}^{3}$	1/3	$10.696^{\text {a }}$	3.5653	$2 \mathrm{p}^{3}$	1/3	$10.696^{\text {a }}$	3.5653	1.783	172.1	161
$\mathrm{N}=\mathrm{N}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	2/5	$22.745^{\text {a }}$	9.098	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	2/5	$22.745^{\text {a }}$	9.098	4.549	439	418
$\mathrm{O}-\mathrm{O}$	$2 \mathrm{p}^{2}$	1/2	8.7191	4.3596	$2 \mathrm{p}^{2}$	1/2	8.7191	4.3596	2.1798	210.4	213.4
$\mathrm{O}=\mathrm{O}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$	2/6	$30.738^{\text {a }}$	10.246	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$	2/6	$30.738^{\text {a }}$	10.246	5.123	494.5	498.3

${ }^{\text {a }}$ Calculations of P_{E} are given with r_{1} based on the equation $P_{E}=\Sigma P_{0} / r_{1}$.
could occur: $2 p^{3}+2 s^{1}, 2 p^{2}+2 s^{1}$, and $2 p^{1}+2 s^{1}$; this corresponded to single, double, and triple bonds of hybridization of the $\mathrm{sp}^{3}, \mathrm{sp}^{2}$, and sp types.

Nitrogen $\left(2 s^{2} 2 p^{3}\right)$

P_{0} of the $2 \mathrm{p}^{3}$ orbital was $15.830 \mathrm{eV} \AA$, and P_{0} of the $2 \mathrm{~s}^{1}$ orbital was $10.709 \mathrm{eV} \AA$. Therefore, they were hybridized with the formation of the $2 p_{\Gamma}^{4}$ hybridized orbital responsible for σ-bond sp hybridization, where P_{0} $=19.193 \mathrm{eV} \AA$. However, this was still greater than P_{0} of the $2 \mathrm{~s}^{2}$ orbitals ($17.833 \mathrm{eV} \AA$). That is, the hybridization process continued due to the $2 s^{2}$ orbital with the formation of the $2 p_{\Gamma}^{5}$ orbital $\left(P_{0}=21.966 \mathrm{eV} \AA\right)$ responsible for the 2π-bond of $s-p$ hybridization.

There are main hybridization options for orbitals in carbon and nitrogen atoms in this approach. Less possible are metastable states with the hybridization of the $2 s^{2}+2 p^{2}$ type with carbon and the $2 s^{2}+2 p^{3}$ of nitrogen.

The initial hybridization principle was applied to the analysis of the energy directedness of mixing of atom orbitals for some other structures (Table II). The computational values of P_{0} of the hybridized orbitals were further used to determine bond energies (E). In the supposition of pair interatomic interaction, the
structural P_{C} parameter was calculated ${ }^{1,7}$ following the principle of the addition of inverse values of initial values of P and, in this case, based on the following equation:

$$
\begin{equation*}
\frac{1}{E}=\frac{1}{P_{C}}=\frac{1}{\left(P_{E} \frac{N}{\mathbf{K}}\right)_{1}}+\frac{1}{\left(P_{E} \frac{N}{\mathbf{K}}\right)_{2}} \tag{3}
\end{equation*}
$$

where N is the coefficient of the bond repetition factor and K usually equals the number of registered atom valence electrons. The half internuclear distance was frequently used as R for binary bonds. The same was true for the hydrogen atom in halogen-hydrogen.

The corresponding calculations for several structures are given in Table II. As shown in Table II, K in the crystalline carbon structures observed was equal to the coordination number. For the σ-bond of nitrogen, $K=3$; this corresponded to the number of valence electrons of the $2 p^{3}$ orbital: $K_{1}=n_{1}=3$.

The comparison of computational values with the experimental data by bond energy ${ }^{8}$ given in Table II characterizes rather the high efficiency of this method. Usually, the ratio error does not exceed 0.1% and is not more than 5% in other cases.

TABLE IV
$E(\mathrm{~kJ} / \mathrm{mol})$ Values of Bond Breakoff in Complex Structures

No.	Reaction 1	Bond breakoff2	First atom			Second atom			E	
			Orbitals 3	$\begin{gathered} N / \kappa \\ 4 \end{gathered}$	$\begin{gathered} P_{E}(\mathrm{eV}) \\ P_{1} \\ 5 \end{gathered}$	Orbitals 6	$\begin{gathered} N / \kappa \\ 7 \end{gathered}$	$\begin{gathered} P_{E}(\mathrm{eV}) \\ 8 \end{gathered}$	$\begin{gathered} \text { Calcd } \\ 9 \end{gathered}$	Found 10
2	$\begin{aligned} & \mathrm{CH}_{2}=\mathrm{CH}+\mathrm{H} \\ & \mathrm{CH}_{3}=\mathrm{CH}_{2}+\mathrm{H} \end{aligned}$	$\mathrm{C}-\mathrm{H}$$\mathrm{C}-\mathrm{H}$	$2 s^{2} 2 p^{2}$	1/4	7.982	$1 \mathrm{~s}^{1}$	1/1	9.0624	409.7	430 ± 12.6
										$\begin{aligned} & 457 \pm 12.6 \\ & >434.8 \end{aligned}$
3	$\mathrm{CH}_{4}=\mathrm{CH}_{3}+\mathrm{H}$									435 ± 4.2
4	$\mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}$									438.9
5	$\mathrm{C}_{2} \mathrm{H}_{6}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}$							10.426	436.4	445.2
6	$\mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H}$							9.0624	366.5	457.3
7	$\mathrm{CH}_{2}=\mathrm{CH}+\mathrm{H}$		$2 \mathrm{p}^{2}$	1/2	6.533	$1 \mathrm{~s}^{1}$	1/1			338.9
										364
8	$\mathrm{CH}_{4}=\mathrm{CH}_{2}+\mathrm{H}_{2}$	$\mathrm{C}-\left(\mathrm{H}_{2}\right)$	$2 \mathrm{p}^{2}$	1/2	6.533	$1 \mathrm{~s}^{1}$	$2 \cdot 1 / 1$	$2 \cdot 9.0624$	463.6	432.6
9	$\mathrm{C}_{2} \mathrm{H}_{5}=\mathrm{CH}_{3}+\mathrm{CH}_{2}$	C-C	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$	1/4	7.982	$2 s^{2} 2 p^{2}$	1/4	7.982	385.2	416.7 ± 8.4
10	$\mathrm{C}_{2} \mathrm{H}_{6}=2 \mathrm{CH}_{3}$									372.4
11	$\mathrm{C}_{3} \mathrm{H}_{8}=\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3}$									380.7
12	$\mathrm{O}_{2}=\mathrm{O}+\mathrm{O}$	$\mathrm{O}=\mathrm{O}$	$2 p^{2}$	2/2	17.967	$2 \mathrm{p}^{2}$	2/2	17.967		-
13	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{OH}=\mathrm{CH}_{3} \mathrm{O} \\ & +\mathrm{OH} \end{aligned}$	- $\mathrm{O}-\mathrm{O}-$	$2 p^{4}$	1/4	$14.954^{\text {a }}$	$2 \mathrm{p}^{4}$	1/4	$14.954^{\text {a }}$	180.4	181.5 ± 19
14	$\mathrm{H}_{2} \mathrm{O}_{2}=2 \mathrm{OH}$	-O-O-	$2 \mathrm{p}^{2}$	1/2	8.7192	$2 \mathrm{p}^{2}$	1/2	8.7192	210.4	231.8 ± 2.5
15	$\mathrm{H}_{2} \mathrm{O}_{2}=2 \mathrm{OH}$	$(\mathrm{OH})-(\mathrm{OH})$			4.5118			4.5118	217.8	231.8 ± 2.5
16	$\mathrm{N}_{2}=2 \mathrm{~N}$	$\mathrm{N}-\mathrm{N}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	$1 / 5$	22.745	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	1/5	22.745	$\begin{aligned} & 219.5 \\ & (2.275 \mathrm{eV}) \end{aligned}$	
17	$\mathrm{N}_{2} \mathrm{H}_{2}=\mathrm{NH}+\mathrm{NH}$	$\mathrm{N}=\mathrm{N}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	$2 / 5$	$22.745 \frac{2}{5}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	2/5	$8.898^{\text {a }}$	439.1	472.8 ± 33.5
				2/3	$=8.898^{a}$	$1 \mathrm{~s}^{1}$	1/1			
18		$\mathrm{N}=\mathrm{N}$	$2 p^{3}$		$10.696^{\text {a }}$			9.0624	$\left(P_{\mathrm{i}}=5.118 \mathrm{eV}\right)$247	
19	$\mathrm{N}_{2} \mathrm{H}_{4}=2\left(\mathrm{NH}_{2}\right)$	$\left(\mathrm{NH}_{2}\right)-\left(\mathrm{NH}_{2}\right)$			$5.118^{\text {a }}$			$5.118^{\text {a }}$		252.7 ± 16.7
20	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{NHNH}_{2}=\mathrm{CH}_{3} \mathrm{NH} \\ & +\mathrm{NH}_{2} \end{aligned}$	$\mathrm{N}-\mathrm{N}$	$2 \mathrm{p}^{3}$	1/3	$10.696^{\text {a }}$	$2 \mathrm{P}^{3}$	1/3	$10.696^{\text {a }}$	172.1	175.7
		$\mathrm{N}-\mathrm{N}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	$1 / 5$	$22.745^{\text {a }}$	$2 S^{2} 2 \mathrm{P}^{3}$	1/5	$22.745^{\text {a }}$	219.5	217 ± 4
21	$\mathrm{NO}_{2}=\mathrm{NO}+\mathrm{O}$	$(\equiv \mathrm{N}=\mathrm{O})-\mathrm{O}$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$	-	4.4525	$2 \mathrm{P}^{2}$	2/2	$8.7191^{\text {a }}$	284.5	305.9
22	$\mathrm{N}_{2} \mathrm{O}=\mathrm{NO}+\mathrm{N}$	$\mathrm{N}-\mathrm{O}$	$2 \mathrm{p}^{1}$	1/1	9.2839	$2 \mathrm{P}^{1}$	1/1	9.7979	460.2	481.8
23	$\mathrm{N}_{2} \mathrm{O}=\left(\mathrm{N}_{2}\right)+\mathrm{O}$	$\left(\mathrm{N}_{2}\right)=\mathrm{O}$	-	-	$22.745^{\text {a }}$	-	-	$8.7191^{\text {a }}$	172.5	167.4
24	$\mathrm{NO}_{2}=\mathrm{N}+\mathrm{O}_{2}$	$(\mathrm{N})-\left(\mathrm{O}_{2}\right)$	$2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$	1/5	9.4826	-	-	8.9835	445.3	439.3

${ }^{\text {a }}$ Calculations of P_{E} were done with r_{1}.

Also, the given model mainly confirmed the approved conclusions and results of the corresponding computational methods of bond energies as applicable to certain structures, the list of which in this article is limited only by the authors' interests.

Calculation of chemical bond energy via the average values of p_{0}

The application of methods of valence bonding and molecular orbitals to complex structures meets significant difficulties with regard to the prediction of hybridization energy directedness and the type of bonds being formed. Let us consider several opportunities of with P_{0} method. It is practical to apply eq. (3) to calculate the energy of chemical bonds, where K usually equals the number of registered valence electrons and $P_{E}(N / K)$ has a physical sense of the averaged energy of the spatial energy parameter falling on one valence electron of registered orbitals. However, for complex structures, $P(\mathrm{~N} / \mathrm{K})$ is averaged by all of the main valence orbitals.
Let us first approve such an approach for binary molecules. For binary molecules, the dissociation en-
ergy $\left(D_{0}\right)$ corresponds to the value of chemical bond energy: $D_{0}=E$.

The results of the calculation of D_{0} by eq. (3) given in Table III showed that $P_{C}=D_{0}$. For some molecules containing F, N, and O , the values of r_{I} (in Table III marked with a superscript a) were used to register the ionic character of the bond in the process of P_{E} calculation. For molecules $\mathrm{C}_{2}, \mathrm{~N}_{2}$, and O_{2}, the calculations were done by divisible bonds. In other cases, the average values of bond energy were calculated. The computational data were not in conflict with the experimental data. ${ }^{8}$

With a similar computation of average values of bond energy in complex structures, the average values of P_{E} (taken from Table I) were also considered but with valence sublevels taken into account (Table IV). In these cases, $P_{C}=E$ (bond energy).

Also, in most cases, due to the influence of all of the valence electrons of atoms, it was possible for the first approximation to be limited with the estimation of interaction only between basic bond atoms (e.g., $\mathrm{C}-\mathrm{H}$ in hydrocarbon structures). To a greater extent, this
refers to hydrocarbon organic structures. However, for nitrogen oxides and hydrides, more accurate results were obtained with preliminary calculations of the P_{C} values of the reaction intermediate products with eq. (3).

Then, E was calculated according to the following equation:

$$
\begin{equation*}
\frac{1}{E}=\frac{1}{P_{C 1}}+\frac{1}{P_{C 2}} \tag{4}
\end{equation*}
$$

where $P_{C 1}$ and $P_{C 2}$ are the P_{C} values of complex structure parameters.

Calculations based on eqs. (3) and (4) are given in Tables III and IV. In some cases, the results of the calculations of bond energy for fragments of NH_{2}, NO_{2}, and $\mathrm{N}_{2} \mathrm{O}$ that were introduced into other complex structures are given. The deviations of the computational data from the experimental ones ${ }^{8}$ did not exceed 10% for complex structures.

CONCLUSIONS

1. The energy of chemical bonds in simple and complex structures could be satisfactorily deter-
mined by means of the P method on the basis of the initial spatial energy characteristics of free atoms with the hybridization of their atom orbitals taken into account.
2. The proposed method for the estimation of the energy directedness of mixing atom orbitals agreed with the experimental data.

References

1. Fischer, C. F. At Data 1972, 4, 301.
2. Klyushnikov, O. I.; Salnikov, V. R.; Bogdanovich, N. M. Chem Phys Mesoscopy 2001, 3, 173.
3. Korablev, G. A. Spatial-Energy Principles of Complex Structures Formation; Brill and VSP: Leiden, The Netherlands, 2005.
4. Waber, J. T.; Cromer, D. T. J Chem Phys 1965, 42, 4116.
5. Clementi, E.; Raimondi, D. L. J Chem Phys 1963, 38, 2686.
6. Clementi, E.; Raimondi, D. L. J Chem Phys 1967, 47, 1300.
7. Korablev, G. A.; Kodolov, V. I. UdRC RAS Izhevsk 2001, 3, 243.
8. Gurvich, L. V.; Karachentsev, G. V.; Kondratjev, V. N.; Lebedev, Yu. A.; Medvedev, V. A.; Potapov, V. K.; Khodeev, Yu. S. In breaking-off energies of chemical bonds. Ionization potentials and affinity with an electron; Science 1974; p 351.

[^0]: Correspondence to: G. E. Zaikov (chembio@sky.chph. ras.ru).

